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V současné době je na trhu poměrně velký výběr různých typů protiproudých výměníků tepla, lišících se jak 
svým  výkonem  tak  provedením  a  tedy  i  svými  tepelnými  a  hydraulickými  vlastnostmi.  Většina  výrobců  v nabídkových 
katalozích u jednotlivých typů výměníků uvádí  velikost teplosměnné plochy a přibližný maximální přenášený tepelný výkon, 
někdy s údajem středního logaritmického teplotního spádu. Pro ucelenější představu o teplotních vlastnostech výměníku by 
bylo  vhodné  uvádět  ještě  další  údaj  charakterizující  daný  výměník.  Doporučoval  bych,  aby  tímto  údajem  byla  štíhlost 
výměníku  γ. 

Ta by byla definována jako bezrozměrné číslo, kterým je poměr mezi součinem délek primární a sekundární strany 
teplosměnné plochy ve směru proudění příslušné tekutiny, dělený velikostí této plochy (  γ = L1 L2 / A  ).  Jak bude dále 
ukázáno, protiproudý výměník s větší štíhlostí má nutně při stejné velikosti teplosměnné plochy lepší teplotní vlastnosti a více 
se  tak přibližuje ideálnímu protiproudému výměníku tepla.

Bude proto vhodné si pro další úvahy definovat, jaké vlastnosti bychom požadovali u ideálního výměníku tepla.  Ty 
vlastnosti jsou v podstatě dvě - tepelná a hydraulická:

1.) extrémně vysoký součinitel prostupu tepla K 
2.) velmi nízkou tlakovou ztrátu na primární i sekundární straně výměníku.
Jak se navenek projeví vysoký součinitel prostupu tepla K [ W m-2 K-1 ] ?  To je zřejmé z běžně užívané  rovnice pro 

prostup tepla:  Q =  A  K Δtln   [  W  ], kde pro daný výkon a danou teplosměnnou plochu zvětšování K vede ke zmenšování 
středního logaritmického teplotního spádu Δtln .  To se navenek projeví tak, že se teplota  t22 přiblíží k teplotě t11, nebo teplota 
t12 k teplotě t21 , případně nastanou oba případy najednou. U ideálního výměníku by přiblížení daných teplot bylo takové, že by 
se teploty v podstatě ztotožnily. Znamená to tedy, že pro extrémně vysoké K  se  Δtln  zmenší k nule.

 Jinak řečeno, z celkového teplotního pole o velikosti t11 – t21, které je na vstupech výměníku k dispozici, bude využito 
prakticky celých 100%, jako rozdíl teplot  t11 – t12  nebo t22 – t21 na výstupu .

U  reálného  výměníku,  byť  i  s vysokým  K ,  je  situace  komplikovanější.  Pro  objasnění  je  nutné  se  vrátit  k teorii 
protiproudého prostupu tepla přez rovinnou stěnu.  

Diferenciální tvar tepelné bilance protiproudého výměníku vyjadřuje množství tepla dQ  prošlé teplosměnnou plochou 
z teplejší tekutiny do chladnější tekutiny na délce dx ve směru proudění tekutiny podél teplosměnné plochy, ve vzdálenosti  x 
[ m ] od vstupu teplejší tekutiny na teplosměnnou plochu.

dQ = C1 ( - dt1 ) = C2 ( dt2 ) = B K Δtx dx (1)
kde  C1 a C2   [ W / K ]  jsou  tepelné  kapacity  tekutiny,    C = m cp ,    m  [ kg / sek ]  je  hmotnost  průtočného  množství,    cp 

[ J  kg-1 K-1 ] je měrná izobarická kapacita (měrné teplo ) , B [ m ] je šířka teplosměnné plochy , Δtx   = ( t1 – t2 ) x   [ K ]   je 
rozdíl teplot primární a sekundární tekutiny ve vzdálenosti  x  od počátku  a  K  je součinitel prostupu tepla [ W m-2 K-1 ].
    Integrací výše uvedené soustavy rovnic v mezích odpovídajících začátku a konci teplosměnné plochy ( od 0 
do L ) obdržíme tepelnou bilanci výměníku tepla v integrálním tvaru:

Q = m1 cp1 ( t11 – t12 ) = - m2 cp2 ( t21 – t22 ) = B K Δtln L  (2)
kde  střední logaritmický teplotní spád  Δtln  = (( t11- t22 ) – ( t12 – t 21 )) /  ln (( t11- t22 ) / ( t12 – t 21 )) (3)
a L je délka teplosměnné plochy.
Výstupní teploty t12 a t22  obou tekutin určíme v závislosti na zadaných vstupních teplotách t11 a t21 pomocí protiproudé funkce 

t12 = t11 - ( t11 – t21 ) Fp t22 = t21 + (C1/C2) ( t11 – t21 ) Fp 

kde protiproudá funkce  Fp =  ( 1 – e – Cp B K L ) / ( 1 – (C1/C2) e – Cp B K L )    kde  Cp = (( 1/C1 ) – ( 1/C2 )) (4)
V rovnicích (2) a (4)  výrazy  B K Δtln L   a  Cp B K L  přímo vybízejí k tomu, sloučit do jednoho výrazu B L = A  jako 
velikost teplosměnné plochy v [ m2 ], což je  bezesporu formálně správné.

Jak ale bylo výše uvedeno, řešení rovnice prostupu tepla bylo prováděno jako integrace od začátku do konce 
teplosměnné plochy a nelze proto u stejné plochy A nahradit úbytek délky L přírůstkem šířky B, i když to ve výsledné rovnici 
formálně jde. Prostým dosazením této záměny do rovnice se výsledek zdánlivě nezmění. Ve skutečnosti, pokud při stejném m 
zvětšíme B, nutně dojde ke snížení  součinitele prostupu K, který je výraznou funkcí rychlosti proudění c [m/sek].

 Jak je možné z Nusseltova  kriteria  pro turbulentní proudění tekutiny odvodit, platí pro poměr 
 Kb / Ka = ( cb / ca ) 2/3 = ( Ba / Bb ) 2/3   (5)

Znamená to tedy, že zvětšení B na dvojnásobek  ( Bb = 2 Ba ) vede ke snížení rychlosti tekutiny na polovinu, což se projeví 
snížením  K na 63 % původní hodnoty  (  Kb = Ka  0,5  2/3 = 0,63 Ka ). Nutno zdůraznit, že vztah (5) platí pro turbulentní 
proudění a že se rozměr  B nesmí zvětšit  a následně rychlost  proudění  c zmenšit natolik, aby turbulentní  proudění přešlo 
v laminární. Jaký má změna velikosti  B  eventuelně  L dopad na výstupní teploty výměníku  t12 a  t22 při stejných vstupních 
teplotách t11 a t21, to je možné odvodit z předchozích rovnic a ukázat na přiloženém grafu průběhu teplot ( obr. 1 ) modelového 
výměníku. 

Ve všech případech má: t11 = 100 oC, t21 = 0 oC, C1/C2 = 3, C = m cp = 1.   Pokud je K  [ kW m-2 oK-1 ]  je následné  Q [ kW ] 
  
A.) Jako základní je uvažován výměník se šířkou B = 1m a  délkou L = 1m, A = 1 m2,  štíhlost γ  = 1,  K = 1,5. 

Výpočtem dostaneme: t12 = 27,95 oC,  t22 = 24,02 oC,  Δtln = 48,03 oC, Q = 72,05 
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B.) B = 2m,  L = 1m,  A = 2m2,  γ  = 0,5 ,  výpočtem dle (5) je K = 0,95
Výsledné hodnoty: t12 = 20,73 oC,  t22 = 26,42 oC,  Δtln = 41,72 oC, Q = 79,23

C.) B = 1m,  L = 2m,  A = 2m2,  γ  = 2 ,  zůstává původní  K = 1,5
Výsledné hodnoty: t12 = 9,44 oC,  t22 = 30,18 oC,  Δtln = 30,18 oC, Q = 90,55

Porovnáme-li dosažené teploty na výstupu z výměníku, pak v případě:

A) se k sobě přiblížily teploty t21 a t12 na  cca 28 oC, to znamená že z celkového teplotního pole t11 –  t21 = 100 oC bylo 
využito  t11 – t12 = 72 oC , to je 72 %.

B) se k sobě přiblížily teploty t21 a t12 na  cca 21 oC, to znamená že z celkového teplotního pole t11 –  t21 = 100 oC bylo 
využito 79 %.

C) se k sobě přiblížily teploty t21 a t12 na  cca 9,4 oC, to znamená že z celkového teplotního pole t11 –  t21 = 100 oC bylo 
využito 90,6 %.

Velice názorně je to vidět na přiloženém grafu průběhu teplot u jednotlivých výměníků A až D 
Křivka B pak mimo to také odpovídá průběhu teplot dvou paralelně spojených výměníků A a křivka C pak dvěma 

sériově zapojeným výměníkům A. 
Pro názornost pak průběh křivek D představuje výměník, který má rozměry výměníku A, ale má 4 x větší součinitel 

prostupu tepla  K ( v daném demonstračním případě  K = 6 ).  Je zřejmé, že tento výměník se prakticky blíží k ideálnímu 
protiproudému výměníku tepla ( t12 – t 21 = 1,23 oC, Q = 98,77  ) a využívá teplotní pole na 98,8%. 

Jak bylo výše uvedeno, je součinitel prostupu tepla výraznou funkcí rychlosti proudění tekutiny. Se čtvercem rychlosti 
ale  roste  kinetická energie  tekutiny a tedy také hydraulická ztráta  mezi vstupem a výstupem tekutiny z výměníku.  Větší 
hydraulická ztráta je tedy nutná daň za vyšší součinitel prostupu tepla u libovolného rekuperačního výměníku tepla. Obdobně 
prodloužení dráhy přestupu tepla  L vede k lineárnímu zvětšení  tlakové ztráty.  Naopak zvětšení  B vede k poklesu tlakové 
ztráty a to se druhou mocninou.

Z toho všeho plyne, že komerční údaj o velikost plochy pro sdílení tepla, eventuelně výkonový údaj, mají příliš malou 
vypovídací  schopnost o vlastnostech výměníku. Dále je zřejmé, že pokud se má reálný protiproudý výměník tepla svými 
teplotními vlastnostmi přiblížit ideálnímu výměníku tepla, pak to nemůže být výměník s malou štíhlostí γ.  Na daný fyzikální 
děj můžeme nahlížet také tak, že při zachování stejné rychlosti proudění a tedy stejného  K je pro přiblížení se k sobě teplot 
t22  →  t11 a  t12  → t21  nutné prodloužit dobu, po kterou k předávání tepla mezi oběma tekutinami dochází. Zcela názorné bude 
toto tvrzení v případě, kdy v rovnicích (4 ) nahradíme délku L rychlostí tekutiny c a časem  τ:   L = c τ.  Exponent v rovnici 
a tedy i celý fyzikální děj  je exponenciální funkcí času τ ve tvaru   Fp =  ( 1 – e – Cp B K c τ ) / ( 1 – (C1/C2) e – Cp B K c τ ) .   

Pokud se podíváme na konkrétní typy a konstrukce protiproudých výměníků tepla je zřejmé, že zvětšování rozměru B 
nečiní žádné potíže. A to jak u deskových tak u  trubkových  (šroubovicových) výměníků. Konstrukce deskových výměníků 
přímo vychází z paralelního řazením desek vedle sebe, pro dosažení celkové požadované velikosti teplosměnné plochy. U 
šroubovicových  výměníků se téhož dosahuje přidáváním dalších vrstev trubiček stočených  do šroubovic.  Zjevná potíž je 
s možností, jak prodloužit délku teplosměnné plochy L. U deskových výměníků je tato délka dána délkou konkrétní desky a 
jejich případné sériové propojování je pro svoji komplikovanost méně užívané. U šroubovicových výměníků je délka trubičky 
stočené do šroubovice omezena mnohem méně a především jinými důvody, než je konečný rozměr výměníku. Běžně je proto 
jejich  délka  několikrát  větší  než  je  délka  L  u  deskových  výměníků.  Z toho  ale  jednoznačně  plyne,  že  štíhlost  běžných 
šroubovicových  výměníků  tepla  je  mnohem větší  než  u běžných  výměníků  deskových.  Z tohoto faktu  si  jistě  každý ze 
zájemců o tuto problematiku udělá vlastní závěry.

Úvahy  o  tom,  nakolik  je  dobré,  aby  se  teplotní  parametry  konkrétně  použitelného  protiproudého  výměníku  tepla 
maximálně přiblížily výměníku ideálnímu, ty ponechám také na uživateli. Je celkem snadné dokázat, že v mnoha případech 
jsou právě teplotní parametry použitého výměníku tím faktorem, který rozhodujícím způsobem určuje technickou kvalitu 
konečného výrobku, ve kterém je protiproudý výměník tepla použit. 
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