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Rád bych tímto svým příspěvkem blíže seznámil širokou odbornou veřejnost s problematikou návrhu a výpočtu 
pracovního  bodu rekuperačních  (  protiproudých  a  souproudých  )  výměníků  tepla.  Tato  problematika  je  v mnoha 
případech chápána velmi zkresleně a značně zkreslené pochopení  fyzikální podstaty potom vede k nepříliš zdařilé 
aplikaci konkrétního typu a velikosti výměníku tepla. 

Aby byly objasněny širší souvislosti fyzikálního procesu při předávání tepla ve výměníku, není možné se obejít 
bez matematického aparátu ke zdůvodnění jednotlivých dějů, ke kterým ve výměníku dochází. Za to se omlouvám 
praktikům v oboru, kterým může být tato úvodní část článku méně pochopitelná. Bez ní by ale moje další tvrzení 
mohla být chápána jako nepodložená.

A teď k vlastní problematice.
Doposud se, při výpočtech tepelných vlastností rekuperačních výměníků tepla, prováděl  výpočet obvykle podle 

výsledků řešení diferenciální rovnice  dQx = C1 ( - dt1 )x = C2 ( dt2 )x = B K Δtx dx,  (1).   Tento diferenciální tvar 
tepelné bilance souproudého i protiproudého výměníku vyjadřuje množství tepla dQx  prošlé teplosměnnou plochou z 
teplejší  tekutiny  do  chladnější  tekutiny  na  délce  dx ve  směru  proudění  tekutiny  podél  teplosměnné  plochy,  ve 
vzdálenosti  x  [ m ] od vstupu teplejší tekutiny na teplosměnnou plochu.  C1 a C2   [ W / K ]  jsou  tepelné  kapacity 
tekutiny,    C = m cp ,    m  [ kg / sek ]  je  hmotnost  průtočného  množství,    cp  [ J  kg-1 K-1 ] je měrná izobarická 
kapacita (měrné teplo ) ,  B [ m ] je šířka teplosměnné plochy , Δtx    = ( t1 – t2 )  x   [ K ]   je rozdíl teplot teplejší a 
studenější tekutiny ve vzdálenosti  x  od počátku  a  K  je součinitel prostupu tepla [ W m-2 K-1 ]. Aby byla soustava 
rovnic (1) klasickým matematickým způsobem řešitelná,  je nutné udělat  některé zjednodušující  předpoklady.  Tím 
zásadním zjednodušením je  to,  že  tepelné  kapacity  cp1 a  cp2 a  také  součinitel  prostupu  tepla  K považujeme  za 
konstanty, neměnící se po celé délce teplosměnné plochy, podél které provádíme integraci. 

   Následně integrací výše uvedené soustavy rovnic (1) v mezích odpovídajících začátku a konci teplosměnné 
plochy ( od 0 do L ) obdržíme tepelnou bilanci výměníku tepla v integrálním tvaru:

Q = m1 cp1 ( t11 – t12 ) = - m2 cp2 ( t21 – t22 ) = B K Δtln L  (2), kde střední logaritmický teplotní spád 
Δtln  = (( t11- t22 ) – ( t12 – t 21 )) /  ln (( t11- t22 ) / ( t12 – t 21 )) (3).   L je délka teplosměnné plochy.  Po převedení součinu 
BL = A, kde A je velikost teplosměnné plochy [ m2 ] , dostáváme známou rovnici ve tvaru  Q = A K Δtln . 
Výstupní teploty t12 a t22  obou tekutin určíme v závislosti na zadaných vstupních teplotách t11 a t21 pomocí souproudé 
nebo protiproudé funkce:      t12 = t11 - ( t11 – t21 ) Fs, p  a  t22 = t21 + (C1/C2) ( t11 – t21 ) Fs, p     
 kde souproudá  funkce  Fs =  ( 1 – e – Cs B K L ) / ( 1 + (C1/C2) ) ,  kde  Cs = (( 1/C1 ) + ( 1/C2 ))                                     
a  protiproudá  funkce   Fp =  ( 1 – e – Cp B K L ) / ( 1 – (C1/C2) e – Cp B K L ) ,   kde  Cp = (( 1/C1 ) – ( 1/C2 )). (4)
Teploty t1x a  t2x jsou tedy funkcí x v rozsahu od 0 do 1 (L) a takto nalezené průběhy teplot, jakožto exponenciální 
funkce x, je samozřejmě možné pro názornost vynést do grafu t1,2 = f(x). 
Teploty jsou:   t11 je vstupní teplota  a t12  je výstupní  teplota teplejší tekutiny, t21 a t22 pak chladnější tekutiny.

Je dobré si povšimnout toho, že na levé straně rovnice (2) se jedná o výraz pro tepelnou bilanci výměníku, 
vztaženou na jeho ochlazovanou a následně na  ohřívanou stranu, a na pravé straně rovnice o vztah vyjadřující přestup 
tepla.

 Termodynamické vlastnosti obou tekutin, které jsou použity jak pro výpočet tepelné bilance (  cp ) tak pro 
výpočet  přestupu  tepla  mezi  příslušnou kapalinou  a  teplosměnnou plochou a  následně  celkového  K,  se  určují  z 
průměrných teplot, obvykle nazývaných referenčních. Referenční  t1 ref  = ( t11+ t12 ) / 2  a  t2 ref = ( t21+ t22 ) / 2. 
Obdobně jsou tyto průměrné teploty použity pro určení velikostí  konstant pro výpočet  hydraulických poměrů ve 
výměníku.  Výpočet  hydraulických  poměrů,  tedy  tlakové  ztráty  proudících  tekutin,  je  v takovémto  případě  další 
náležitostí, kterou je nutné výpočtem nalézt.

 Na výměník je,  jak bylo  výše  uvedeno,  pohlíženo jako na jeden celek,  u kterého  jsou termodynamické 
vlastnosti  příslušné kapaliny po celé délce teplosměnné plochy konstantní. Případný rozdíl mezi ochlazováním a 
ohříváním se řeší zavedením pomocné konstanty (η1/η2 -  to je poměr viskozit ) do výpočtu. 

Pracovní  bod  výměníku  tepla  se  následně  nalezne  iteračním  postupem,  kdy  se  změnou  některé  teploty 
(obvykle  teploty  t12  )  hledá stejný výkon z rovnic tepelné  bilance  a  rovnice přestupu  tepla.   Některé  výpočtové 
programy se iteračnímu výpočtu vyhýbají a poměr mezi výkonem vycházejícím z rovnice přestupu tepla a výkonové 
bilance uvádějí v % jako výkonovou rezervu.

Výše naznačené řešení diferenciální rovnice (1) ale fyzikální realitu značně zjednodušuje. Předně v tepelné 
bilanci není cp konstantní, ale je funkcí teploty. Přesné řešení této rovnice by proto bylo ve tvaru:  Q1 = ∫ m1C1 (-dt1 ) 
v mezích od T11 do T12.   Přesnější popis funkce cp = f(t) je alespoň funkcí 2 stupně a jeho integrál by dával poměrně 
složitý vztah.  Znalost této funkce by nám ale stejně nebyla moc platná, protože pro řešení soustavy rovnic (1)  je 
nutné vyjádřit Cp a stejně tak K jako funkci x, tedy cpx = f(x)  a Kx = f(x).  Substituci f(x) = f(t) nemůžeme použít, 
protože inverzní funkci f(t) = f(x) teprve hledáme jako kýžený výsledek.

K dalšímu našemu výpočtu je proto mnohem snazší a především přesnější,  v soustavě rovnic (2) na levé 
straně množství tepla v tepelné bilanci  vyjádřit  jako součin průtočného množství a rozdílu entalpií pro vstupní a 
výstupní  teploty.  Tedy  Q1  = m1(h11-h12) = Q2  = m2(h22-h21)  (5).Tímto způsobem dostaneme levou stranu soustavy 
rovnic (1) definovanou jednoduše a především číselně naprosto přesně.

 Pravá strana rovnice (1) je nadále dána integrálem od 0 do L funkce  B ( Kx Δtx ) dx.  I kdybychom pro 
jednoduchost položily Kx = konstantní hodnotě pro vhodnou referenční teplotu, k řešení rovnice ale dále  potřebujeme 
znát průběh funkce Δtx =   f(x), kterou neznáme. Problém můžeme zjednodušit tak, že ze známé závislosti h12 = f(t12) a 
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h22 = f(t22) zpětně nalezneme teploty t12 a t22 a následně ze vstupních a výstupních teplot určíme Δtln . Následně integrál 
na pravé straně rovnice (1) vypočítáme podle původního postupu pro konstantní  K a takto nalezeného  Δtln  . Tento 
postup byl volen u našich doposud používaných výpočtových programů.

Je zřejmé, že jak původní tak i tento naznačený způsob výpočtu má postačující přesnost pouze za předpokladu, že 
je změna teplot a tím i termodynamických vlastností tekutin malá, a tudíž je i malá změna K.  Nepomohlo by ani to, 
kdyby byla tato změna lineární, a pro střední teplotu že se přírůstek hodnoty K pro jednu krajní teplotu vykompenzuje 
poklesem pro druhou krajní teplotu. V integrálu je totiž součin ( Kx Δtx ), a tak by toto případné vykompenzování bylo 
možné jen v případě, že bude Δtx  konstantní, a to je případ zcela výjimečný.  U výměníků kapalina – kapalina, které 
pracují s menšími rozdíly teplot, není změna K s teplotou, a tedy změna Kx podél teplosměnné plochy tak výrazná. Je 
proto možné, byť i s určitými výhradami, tento způsob výpočtu přijmout. Zásadní potíž ale nastane již v případě, kdy 
změnou teploty kapaliny dojde ke změně mezi laminárním a turbulentním prouděním. Již v tomto případě je jasné, že 
vztáhnout na celý výměník rovnice přestupu tepla pro jeden druh proudění ( laminární nebo turbulentní ? ) povede ke 
zcela rozdílným výsledkům. Je nutné si plně uvědomit, že přestup tepla při laminárním proudění kapaliny je popsán 
zcela jinými rovnicemi nežli u proudění turbulentního a má výrazně menší hodnotu  α.  A jestliže na vstupu horké 
kapaliny je spolehlivě turbulentní proudění a na jejím chladném výstupu zase spolehlivě laminární proudění, podle 
jakých  rovnic  řešit  výměník  jako  celek  ?  Pokud volíme postup podle  toho co  vychází  z referenční  teploty,  mají 
výsledky nespojitost a to vede k tomu, že iterací nejde nalézt řešení  soustavy rovnic (2). Z této úvahy je zřejmé, že 
některá zjednodušení mají svoje hranice, které by se neměli překračovat

   V žádném případě ale nemůže platit  konstantní  K pro výměníky s kondenzujícími parami,  případně vroucí 
kapalinou,  kde  jsou  zásadně  jiné  termodynamické  vlastnosti  kondenzující  páry  a  její  kapaliny  (kondenzátu).  Jak 
výpočtem  v konkrétních případech vychází,  pohybuje se součinitel  přestupu tepla  α pro kondenzující vodní páru 
příkladně okolo hodnoty 50 000 W/m2K a u kondenzátu z této páry bezprostředně vzniklého, který je dále ochlazován, 
je součinitel  při  turbulentním proudění okolo 700 W/m2K. Je tedy zcela evidentní,  že vztáhnout  součinitel  α pro 
kondenzující páru na celý výměník je zjednodušení zcela nevhodné, naprosto neodpovídající realitě.

Řešení celého problému je teoreticky jednoduché, a vychází opět z původní  diferenciální rovnice (1).   Je ale 
nutné plně respektovat zásadní fakt, že součinitel prostupu tepla K konstantou není, ale že je funkcí x, tedy že je  Kx. 
Stejně tak že je funkcí x také Δtx .  

Přímá integrace soustavy rovnic  Q1  = m1(h11-h12) = Q2  = m2(h22-h21) =  ∫  B ( Kx Δtx ) dx  v mezích od 0 do L 
klasickou metodou, to znamená nalezením primitivní funkce, není pochopitelně možná. Tak je nutné jejich řešení 
nalézt jiným způsobem. V tomto konkrétním případě pomocí metody výpočtu, která je naším Know-how. Tomuto 
postupu v zásadě nic nebrání  a to je také podstatou nových výpočtových programů, které má autor k dispozici pro 
šroubovicové ( někdy nazývané spirálové )  výměníky tepla typu VTX, VTM a VTB z výrobního programu Trmické 
energetické strojírny s.r.o. 

Tyto  výpočtové  programy  by  bylo  vhodnější  považovat  za  matematické  modely  výměníků.  Umožňují  určit 
teploty  a  tlaky  v libovolném  místě  výměníku  tepla,  včetně  ostatních  výpočtových  hodnot   vztahujících  se 
k libovolnému místu teplosměnné plochy, jako je hodnota Re, součinitele přestupu i prostupu tepla, měrného zatížení 
atd.   Výpočet  je  samozřejmě  možný   pro  teplejší  stranu  jak  v trubkách  výměníku  tak  v plášti  a  pro  zapojení 
protiproudé i souproudé.  Ohřívat  je možné vedle vody řadu dalších  kapalin, vodních směsí (glykoly apod. ) a plynů. 
Kondenzovat může samozřejmě voda a zatím některé vybrané freony.

Nalezené  výsledky  jsou  potom uvedeny  na  podrobném protokolu  a  dále  ve formě  grafů.  Protokol  pro  níže 
uvedené zadání je na obrázku č.1.  Je nutné si uvědomit několik zásadních změn, kterými se výsledky na protokolu liší 
od výsledků nalezených u původních ( klasických ) výpočtů.  Předně, průměrné hodnoty termodynamických vlastností 
tekutin jsou vypočítány jako průměr jejich součtu podél příslušné teplosměnné plochy. Abych se vyjádřil matematicky 
přesně, je to hodnota určitého integrálu 1/L ∫ f(x) dx  v mezích od 0 do L příslušné f(x).  Střední logaritmický teplotní 
spád není logicky definovatelný, protože průběhy teplot nejsou exponenciální funkcí x a střední logaritmický teplotní 
spád postrádá tedy smysl, přestože numericky ho je možné ze vstupních a výstupních teplot vyčíslit. Vyčíslen je ale 
průměrný teplotní spád, což je ale zcela něco jiného než střední logaritmický teplotní spád. Opět se jedná o průměr 
součtu rozdílů teplot podél teplosměnné plochy, daný integrálem 1/L ∫ Δtx dx  v mezích od 0 do L.

 Také potom neplatí že Q = B K Δtln L . Samozřejmě že také nemůže platit, že součin středního teplotního 
spádu, středního součinitele prostupu tepla a velikost teplosměnné plochy dává celkový výkon výměníku. Platí tedy že 
Q ≠ B Kstř Δtstř L Celkový výkon je, jak bylo výše uvedeno, dán specielním numerickým řešením integrálu funkce 
f(x) = B Kx Δtx dx, jehož výsledkem je  Q =  ∫Qx dx =  ∫B Kx Δtx dx,  s integrací v mezích od 0 do L.  Je vhodné 
upozornit i na to, že metoda umožňuje řešení integrálu i v případě, kdy není B konstanta.  To znamená, že  i  B může 
být funkcí x. Tedy je možný i výpočet pro Q =  ∫Bx Kx Δtx dx. To je velmi významné pro specielní druhy výměníků 
tepla.

Velmi užitečné je grafické znázornění průběhu jednotlivých veličin podél teplosměnné plochy. Tyto grafy mají až 
neuvěřitelně vysokou vypovídací schopnost. Program umožňuje, a to především pro jeho názornost, ponechat skokové 
změny v součiniteli přestupu tepla při přechodech mezi laminárním a turbulentním prouděním . Pro konečné použití 
výpočtů je možné a také vhodné, tyto skokové změny linearizovat v rozsahu Re 2300 až 3300, kdy lineárně přechází 
jeden součinitel tepla ve druhý.  

Za  zmínku  ještě  stojí  porovnání  výsledků  získaných  novým  výpočtem  s výsledky  měření,  provedených  na 
výměnících  ve  zkušebně.  Je  možné  konstatovat  dobrou  shodu  mezi  takto  získanými  údaji  o  tepelném  výkonu, 
nalezené teplotě t12 a tlakových ztrátách na straně pláště i trubek. 

Rozdíly mezi původním a novým způsobem výpočtu je možné posoudit na dále uvedeném příkladu a na k němu 
přiložených grafech,  pro následující zadání: 
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Výměník vodní pára – voda, zapojení protiproudé, pára v trubičkách – ohřívaná voda v plášti,  regulace výkonu na 
straně kondenzátu, tedy zaplavováním,  výměník VTX2,  A = 1,2 m2. 
 Červeně je vynesen graf teplé strany, modře studené strany.
Zadání: Q = 100 kW,  P1 = 200 kPa a odtud T11 = 120,21 °C ,  T21 = 10°C ,  T22 = 90°C , a odtud  m2=0,2986 kg/sek,  
V prvém případě, pro klasický způsob výpočtu pro nalezené konstantní K = 3,202 kW/m2K dostáváme T12 = 32,24 °C, 
m1=0,0389 kg/sek,   Δtln = 26,025  K. Reynoldsovo číslo vztažené na celý výměník je 2339.  Proudění je tedy 
uvažováno turbulentní.
Průběh teplot podél teplosměnné plochy  ve výměníku je exponenciální a je znázorněn na grafu 1.  Znovu proto 
zdůrazňuji, že takovýto průběh teplot ve výměníku je při tomto způsobu výpočtu  předpokládán!

graf 1

Při novém způsobu výpočtu dostaneme pro stejné zadání T12 = 42,66 °C, m1=0,0396 kg/sek,    střední hodnota  K = 
1,693 kW/m2K. Střední teplotní spád 57,66 K.  Podrobný protokol je na obrázku 1. Jeho vypovídací schopnost není 
nijak veliká, na rozdíl od přiložených grafů.

Průběh teplot podél teplosměnné plochy  ve výměníku je na dalším grafu 2.

graf 2
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Na první pohled je zřejmé, že výše uvedené skutečné průběhy teplot nemají s původním předpokládaným 
exponenciálním průběhem nic společného, mimo krajních teplot ze zadání.  Na následujících grafech jsou pak 
znázorněny průběhy  dalších jednotlivých veličin.

Na grafu 2 průběhu teplot je vidět postupný pokles teploty kondenzace z původní teploty syté páry 120,12 °C 
na teplotu 112,20°C, ve vzdálenosti 0,48 L. Pokles teploty kondenzace je způsobený poklesem tlaku syté páry vlivem 
tlakové ztráty při jejím proudění v trubičkách výměníku. 

Na grafu 4 průběhu součinitele prostupu tepla jsou zřejmé zlomy. První zlom je na 0,46 L. Je způsoben 
změnou laminárního proudění v turbulentní u ohřívané vody. To se projeví i zlomem strmosti na grafu průběhu teploty 
ohřívané vody.  Druhý zlom na 0,49 L je způsobený ukončením kondenzace a ve směru proudění kondenzátu  začíná 
jeho ochlazování z původní počáteční teploty 112,20°C po ukončení kondenzace na konečnou teplotu 42,66 °C. 
Poslední zlom na 0,64 L je způsobený přechodem turbulentního proudění  na laminární u chladnoucího kondenzátu. 

Je také zřejmé, jak s teplotou ohřívané vody stoupá součinitel prostupu tepla z hodnoty cca  250 W/m2K pro 
teplotu cca 20 °C na hodnotu cca 4000 W/m2K pro teplotu 90 °C. Pokud uvážíme, že jsme při původním způsobu 
výpočtu uvažovali s konstantním K =3,202 kW/m2K, je zřejmé, že jsme byli hodně vedle.

Z dalšího grafu průběhu měrného výkonu je zřejmé, že největší měrné zatížení je na 0,27 L a dosahuje 
hodnoty 180 kW/m2. V případě, že nebude ohřívaná vody dostatečně změkčena, je možné očekávat v tomto místě a 
jeho okolí největší zanášení kotelním kamenem. Plocha pod grafem měrného výkonu odpovídá celkovému 
přenesenému výkonu Q, protože Q = ∫Qx dx od o do L .

graf 3

graf 4
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graf 5

Na grafu 6 průběhu Re je černě vynesena čára pro Re kritické = 2300. Pro větší hodnotu Re je počítáno 
s prouděním turbulentním, pro menší Re s prouděním laminárním.

Porovnáme-li  graf  průběhu teplot  u  klasického způsobu výpočtu  s grafem nového výpočtu  je  zřejmé,  že 
použité zjednodušující předpoklady celý původní výpočet zcela degradují a výsledkem je něco zcela odlišného, nežli 
je skutečný průběh teplot  a ostatních veličin ve výměníku.

 Graf průběhu součinitele prostupu tepla ve spojení s grafem průběhů Reynoldsova čísla Re mají mimořádně 
vysokou vypovídací schopnost o tom, k čemu v jednotlivých částech výměníku dochází.

graf 6
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obrázek 1
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S ohledem na to, že diferenciál  dx  nebo přesněji Δx  při novém způsobu výpočtu nemůže limitovat k nule, 
nemůže být ani  ∑ ΔQx  přesně rovna výkonu z energetické bilance. V praxi je tato odchylky menší než  0,02% a je 
tedy zcela zanedbatelná. 

Pro  ilustraci  jsou  ještě  připojeny grafy  7  až  10  průběhů  pro  stejné  vstupní  hodnoty,  ale  pro  souproudé 
zapojení. Výstupní teplota T12 je spočítána na  91,39°C. Je zřejmé, že ke známému exponenciálnímu průběhu teplot 
v souproudém zapojení to má opět velmi daleko.

graf 7

graf 8

Na dalším grafu 8 průběhu součinitele prostupu tepla je zřejmé, že na jeho výši má rozhodující vliv teplota ohřívané 
vody  a  s tím  související  součinitel  přestupu  tepla  mezi  touto  kapalinou  a  teplosměnnou  plochou.  Nárůst  je  u 
turbulentního  proudění  zhruba  2,5  násobný.   A  samozřejmě  také  změna  laminárního  proudění  chladné  kapaliny 
v turbulentní po jejím ohřátí. Koncové teploty T12 a T22 se k sobě také přiblíží mnohem více než v případě protiproudé 
aplikace, a to proto, že obě kapaliny v této části výměníku mají mnohem vyšší teplotu a tedy také součinitel přestupu 
tepla. Ostatní vzájemné souvislosti si jistě každý zájemce vysleduje sám. 
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graf 9

Zvlášť si dovolím upozornit na to, že celkový součinitel prostupu tepla je rozhodujícím způsobem ovlivněn 
vždy tím menším ze součinitelů přestupu tepla mezi teplosměnnou plochou a tekutinou. To je zvláště dobře patrné 
srovnáním grafu součinitelů přestupu tepla se součinitelem prostupu tepla na grafech 8 a 9. Graf 9 součinitelů přestupu 
tepla  má  osu  y  v logaritmických  souřadnicích,  aby  bylo  možné  znázornit  součinitele  v rozsahu  100  až  100  000 
W/m2K.  Až do vzdálenosti 0,15 L je součinitel prostupu nízký, cca 705 W/m2K proto, že ohřívaná voda je studená, 
s vysokou viskozitou a proudění je proto laminární se součinitelem přestupu cca 730 W/m2K. Nic není platné to, že u 
kondenzující  páry na teplé straně v tomto místě je součinitel  přestupu cca  48 600 W/m2K. Potom, po zahřátí  na 
studené straně přejde proudění v turbulentní a součinitel prostupu začne s teplotou ohřívané vody rychle stoupat až 
k hodnotě 4 000 W/m2K. V místě x = 0,15 L kde dochází  ke změně součinitele přestupu tepla u ohřívané vody, 
dochází i  ke změně součinitele u kondenzující páry,  a to proto, že se změní rozložení teplot mezi oběma medii a 
teplosměnnou plochou. Další skok v součiniteli prostupu tepla je na x = 0,67 L. Tam dochází k ukončení kondenzace a 
celkový  součinitel  prostupu  tepla  se  podřídí  především  součiniteli  přestupu  mezi  proudícím  kondenzátem  a 
teplosměnnou plochou, který je menší než součinitel ohřáté vody v daném místě.
Z průběhu měrného výkonu je  zase zřejmé,  že jeho malá hodnota na počátku je zapříčiněna malým součinitelem 
prostupu tepla,  který je na počátku. Jeho zmenšování od hodnoty 0,3 L je pak způsobeno rychlým zmenšováním 
rozdílu teplot obou stran výměníku.

graf 10
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graf 11

Je také možné a účelné posoudit, k jakým změnám dojde při  původním zadání, když  zaměníme zapojení 
výměníku tak, že pára bude v plášti a ohřívaná vody v trubičkách.  Na dalším grafu 12 je průběh teplot pro tento 
případ. Kondenzát se v tomto případě vychladí na teplotu  pouhých 21,26 °C. Jak je vidět z grafu 13 průběhu tlakové 
ztráty ve výměníku, tlak páry při jejím proudění a kondenzaci v plášti výměníku poklesne velmi málo, a kondenzace 
probíhá prakticky při konstantní teplotě. Na straně ohřívané vody je ale výrazně větší tlaková ztráta, okolo 11,5 kPa, 
v porovnání s variantou, kdy ohřívaná voda proudí v plášti.  Proudění vody je po celé délce výměníku turbulentní. 
Naopak proudění kondenzátu je po celé délce laminární ( graf 16 ).

graf 12
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graf 13

graf 14

graf 15
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graf 16

Jak  si  také  může  každý  z případných  uživatelů  dobrého  výpočtového  programu  ověřit,  výkonové 
předimenzování  výměníku  tepla  má  ve  většině  případů  negativní  důsledky  na  jeho  funkci.  Tím  je  myšleno 
nedostatečné  vychlazování  topné  vody eventuelně  kondenzátu  a  nízký  měrný  výkon.  Jediným  přínosem je  malá 
tlaková ztráta, v mnoha případech až zbytečně malá. A že výkonové předimenzovávání energetických zařízení a tedy i 
výměníků tepla je zcela běžné, to je všeobecně známo. A to už při technickém zadávání úkolu, a pak se následně jistí i 
projektant. Samozřejmě, že není proti předimenzování ani dodavatel zařízení, když může dodat výměník za podstatně 
vyšší cenu než by výkonově postačoval.

Zcela názorně je možné tuto situaci předvést na předchozím zadání, s tím, že použijeme výměník o stupeň 
větší. Tedy místo VTX2 použijeme VTX3, s teplosměnnou plochou 2 m2. Pokud chceme ohřívat vodu z 10°C na 90°C 
parou o tlaku 200 kPa, pak je mezní výkon výměníku VTX3 pro toto zadání zhruba 66,74 kW, při teplotě kondenzátu 
99,99 °C. Průběh teplot je zřejmý z přiloženého grafu 17.

graf 17

Proč tomu tak je, je možné odvodit z průběhu součinitele prostupu tepla a průběhu Reylnoldsova čísla na 
dalších grafech.
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graf 18

Proudění ohřívané vody v celém výměníku je laminární, s nízkým součinitelem přestupu tepla mezi vodou a 
povrchem  trubiček.  Je  proto  i  malý  součinitel  prostupu  tepla.  To  vede  k malé  kondenzaci  páry  a  na  celé  délce 
výměníku ji zkondenzuje pouze tolik, co odpovídá výkonu cca 67 kW.

graf 19

Pro původní zadání 100 kW je pak použitelný až výměník ještě o stupeň větší, VTX4 s teplosměnnou plochou 
3 m2. To je opět zřejmé z přiložených grafů 20 - teplot, 21 - K a 22 - Re. Ten je ale o cca 60 % dražší nežli výměník 
VTX2. Proč ho tedy nepoužít, když tomu odběratel stejně nerozumí a fungovat to bude ?
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graf 20

graf 21

graf 22
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Otázkou samozřejmě zůstává, jak to dopadne, pokud je v našem uvažovaném případě použit výměník VTX3, 
který při tlaku páry 200 kPa je schopen dávat výkon jen cca 67 kW a provozovatelem je požadován výkon 100 kW. 
Jak to za běžné situace vůbec zjistit  že je problém v předimenzování ?  To je sám o sobě problém a vždycky je snaha a 
je to běžně užívané, svést to na něco jiného ( malý tlak páry, zanesený výměník apod. ). V uváděných případech je vliv 
předimenzování  ilustrován  na  výměnících  řady VTX.  Jistě  je  každému jasné,  že uvedené  argumenty platí  zcela 
obecně  pro  všechny  typy   rekuperačních  výměníků,   samozřejmě  i  u  výměníků  ostatních  výrobců.  Příklad  na 
výměnících  VTX  je  uveden  proto,  že  to  nový  výpočtový  program  pro  tyto  výměníky  na  grafických  průbězích 
umožňuje zcela názorně ilustrovat.

Pozorný odborník si při prohlížení přiložených grafů jistě uvědomí to, že pokud bychom u daného výměníku 
odřízli řekněme posledních 20% jeho délky, dostaneme v podstatě graf průběhu teploty nebo jiné grafem znázorněné 
veličiny pro konstrukčně stejný výměník, který má ale délku (a tedy i  plochu ) pouze 80 % původního výměníku. 
Přibližně tatáž úměra bude platit i pro výměník řekněme poloviční délky. Je tedy možné celkem dobře odhadnout, jaké 
vlastnosti bude mít výměník ve zkráceném provedení, který je pochopitelně možné bez problémů vyrobit.  Představme 
si  situaci,  že místo výměníku  VTX2 o ploše  1,2 m2 budeme chtít  použít  výměník  v provedení  VTX4 ale  v jeho 
variantě zkrácené na polovinu, to znamená s plochou 1,5 m2. Důvody mohou být prostorové, kdy se výměník původní 
délky nevejde do uvažovaného místa. Na grafu 20 je průběh teplot pro náš uváděný případ s výkonem 100 kW, pro 
výměník VTX4 v normálním nezkráceném provedení s plochou 3 m2.  Na grafu 20 celkem velmi dobře odhadneme, 
jak potom bude situace vypadat pro zadaný výkon a pro zkrácenou verzi výměníku VTX4 s poloviční plochou 1,5 m2. 
Znamená to, že na grafu 20 a dalších končíme na x = 0,5L a  na tomuto místu odpovídajících teplotách. Výsledným 
zjištěním tedy je, že se u zkráceného výměníku vždy výrazně zhorší jeho teplotní vlastnosti proti výměníku původní 
délky. Z přiložených grafů je velmi snadné odhadnout a pochopitelně úpravou programu i spočítat, jak by se choval 
výměník v případě jeho prodloužení. Z toho ale plyne, že naše společnost má možnost na specielní zakázku navrhnout 
a následně vyrobit výměník předem zadaných vlastností, pokud to fyzikální zákonitosti dovolují.

 Vztah mezi velikostí a délkou teplosměnné plochy je záležitost, na kterou jsem si dovolil upozornit svým 
článkem v tomto časopise   již v čísle 6/2003.  Nejenom velikost ( m2 ) ale i délka teplosměnné plochy a z ní odvozená 
štíhlost  výměníku  je  důležitým  údajem o  teplotních  vlastnostech  výměníku.  Ono totiž,  z běžně  užívaných  rovnic 
přestupu tepla, nikde není bezprostředně zřejmé, že předávání tepla, to znamená předávání energie, je také nepřímo 
funkcí  času.  Tuto  funkční  závislost  si  uvědomíme  až  tehdy,  když  v rovnici  souproudé  a  protiproudé  funkce  (4) 
nahradíme  délku teplosměnné plochy L rychlostí tekutiny v  a časem τ:  L = v τ .   Exponent v rovnici  a tedy i celý 
fyzikální děj příkladně  protiproudé funkce,  je potom exponenciální funkcí času τ ve tvaru Fp =  ( 1 – e – Cp B K v τ ) / ( 1 
– (C1/C2) e – Cp B K v τ ).  {Tady si neodpustím upozornit na analogii s rovnicemi z elektrotechniky pro nabíjení a vybíjení 
kondenzátorů}.  To  pochopitelně  platí  pro  exponenciální  průběhy  zcela  přesně.  V našem  případě,  kdy  není 
K konstantou, se obdobná funkce času objeví v integrálu.  Pokud použijeme substituci  dx = v dτ, pak Q = ∫Qτ dτ = 
∫B Kτ Δtτ  v dτ .  Integrál,  jako funkci času, je potom možné stejnou metodou numericky vyčíslit.  Ke změnám na 
grafech doje v tom, že na ose x bude uveden čas v sekundách a ten bude pro každý výpočet jiný,  podle konkrétní 
rychlosti tekutiny.  Je tedy zřejmé, že pracovat s nezávisle proměnnou x v mezích od 0 do L je mnohem pohodlnější a 
především na grafech názornější. Tím se ale z rovnic vytratil čas a jeho vliv na celý děj. Energii ale nelze předávat 
jaksi mimo čas, vždy je její předávání spojené s časem. .  Zkrácení L při zachování nezměněných ostatních veličin 
(  především  zachování  rychlosti  tekutiny  v )  znamená  zkrácení  času  při  předávání  tepla,  s tomu  odpovídajícím 
důsledkem. Aby byl tento argument ještě názornější, proveďme si následující úvahu. Vrátíme se k rovnici (2) Q = m1 

cp1 ( t11 – t12 ) = - m2 cp2 ( t21 – t22 ) = B K Δtln L a nahradíme L = v τ, to znamená délku teplosměnné plochy nahradíme 
součinem rychlostí proudění  v příslušné tekutiny a časem τ, po který k přestupu tepla dochází. Rovnice  (2) potom 
přejde na  Q = m1 cp1 ( t11 – t12 ) = - m2 cp2 ( t21 – t22 ) = B K Δtln v τ  . Pokud budeme chtít při stejném množství 
předaného tepla zmenšit teplotní rozdíl mezi ochlazovanou a ohřívanou tekutinou, to znamená zmenšit Δtln , musíme 
zvětšit  některý ze členů součinu na pravé straně  rovnice.  To znamená při  zachování  konstantních hodnot  B, K a 
v zvětšit  τ,  to  znamená  dobu po  kterou  k přestupu  tepla  dochází.  A to  je  za  daného  předpokladu  možné jedině 
zvětšením L, to je prodloužením teplosměnné plochy!

Jsem si  dále  plně  vědom toho,  že  v mnoha  případech  je  projektant,  případně  odběratel  výměníku  tepla 
postaven do situace, kdy mu nezbývá nic jiného, nežli věřit výpočtům, které mu jsou s nabídkou výměníku předloženy, 
případně které si pomocí příslušného programu dodaného výrobcem sám vypočítá. Žel, jak je vidět, může se výpočet 
podle dosud užívaného způsobu výpočtu diametrálně odlišovat  od reality.  On ale nemá možnost  tento fakt  vůbec 
odhalit. Na druhou stranu je nutné přiznat, že i s méně pečlivě navrženým výměníkem tepla zařízení nějak pracuje, 
vesměs ke spokojenosti uživatele. On totiž netuší, že by mohlo s dobře navrženým výměníkem pracovat mnohem lépe.

 Takovým  zářným  příkladem  bývá  nepříliš  vhodný  výměník  ve  spojení  se  solárními  kolektory.  Touto 
nevhodnou  volbou  dochází  k provozování  kolektorů  na  zbytečně  vysoké  provozní  teplotě,  což  vede  ke  snížení 
termické účinnosti kolektorů. Z toho ale vyplývá,  že volbou nevhodného výměníku tepla dochází ke znehodnocení 
investice do solárních kolektorů. A to o stejné procento, jako je procento zhoršení termické účinnosti vlivem zbytečně 
vysoké provozní teploty kolektorů, způsobené nevhodným výměníkem tepla. A pokud se toto procento vyšplhá na 20 
a více %, je to opravdu na pováženou. Jinak řečeno, pro stejné množství předaného tepla stačí pro dobrý výměník tepla 
menší počet kolektorů.  Obdobná situace je při volbě vhodného výměníku u tepelného čerpadla, kde mají teplotní 
parametry zásadní vliv na velikost topného faktoru.

 Jak  každého  asi  napadne,  poměrně  jednoduchou  taktikou  při  výběru  vhodného  výměníku  tepla  bude, 
požadovat vedle podrobného protokolu s pracovním bodem výměníku také graf průběhu teplot ve výměníku, případně 
grafy  ostatních  veličin.   Z průběhu  těchto  veličin  je  možné  velmi  dobře  posoudit  provozní  chování  výměníku, 
eventuelně vzájemnou provázanost grafů jednotlivých veličin.
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 Naše společnost, Trmická energetická strojírna s. r. o., jako výrobce výměníků řady VTX , VTM a VTB 
považuje za seriozní objasnit odborné veřejnosti problematiku výpočtu pracovního bodu výměníků tepla a poskytnout 
projektantům a uživatelům výměníků dokonalejší výpočtové programy, které mnohem reálněji popisují jejich provozní 
chování. Tato znalost vlastností výměníku pak výrazně usnadní volbu toho nejvhodnějšího typu pro konkrétní aplikaci.

Na závěr stojí za zmínku ještě ta okolnost, že výpočty podle nového programu vyžadují minimálně o dva řády 
více početních operací nežli u výpočtů podle původních programů. Vzhledem k rychlosti a možnostem současných PC 
je to jak uživateli tak i počítači úplně jedno. Určitý problém to může způsobovat u starých a pomalých počítačů. Nový 
program pracuje v Exelu, a to z toho důvodu, že používá některé specielní funkce, které jsou v Exelu k dispozici a 
nebylo je nutné pracně programovat. Použití Exelu pak také mimo jiné  umožňuje, výsledky výpočtů bez potíží dále 
používat v původní elektronické formě pro další práci.

Tento článek jistě přispěje také k tomu, aby se do odborné veřejnosti dostalo větší povědomí o schopnostech a 
odborných znalostech techniků naší společnosti, které úzce souvisí s technickou úrovní a kvalitou našich výměníků.

Podrobnější pojednání o výměnících řady VTX, VTM a VTB najdete na našich webových stránkách, www.trmicka.cz, 
včetně informace, jak  zdarma získat  náš nový výpočtový program.
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